Recombinant Human KATNB1

Por favor contáctenos para obtener información detallada sobre el precio y disponibilidad.
Documents del producto
Product specifications
Category | Proteins and Peptides |
Host | E.Coli |
Reactivity | Human |
Assay Data | Centrifuge the vial before opening, reconstitute in sterile distilled water to a concentration of 0.1-1 mg/ml by gently pipetting 2-3 times, don't vortex. |
Recommended Dilution | ¥ |
Isotype | ¥ |
Clone ID | ¥ |
Observed MW | 42.6 kDa |
Expression | 458-655 |
Purity | Greater than 90% as determined by SDS-PAGE. |
Size 1 | 50μg |
Size 2 | 200μg |
Size 3 | 1mg |
Form | Lyophilized powder |
Tested Applications | Western Blot, ELISA |
Buffer | Lyophilized from a 0.2 μm filtered solution in 10 mM Hepes, 500 mM NaCl with 5% trehalose, pH 7.4. |
Availability | 7 days |
Storage | The lyophilized protein is stable at -20 °C for up to 1 year. After reconstitution, the protein solution is stable at -20 to -80 °C for 3 months or 1 week at 2 to 8 °C under sterile conditions. For extended storage, it is recommended to further dilute in working aliquots, avoid repeated freeze/thaw cycle. |
UniProt ID | Q9BVA0 |
Alias | KAT, Katanin p80 subunit B1, KATNB1, p80 katanin |
Background | Protein KATNB1 |
Status | RUO |
Note | Tag : N-terminal His-IF2DI Tag |
Related Products

Human KATNB1 (Katanin p80 WD40 repeat-containing subunit B1) ELISA Kit
Ver Producto
KATNB1 antibody
Participates in a complex which severs microtubules in an ATP-dependent manner. May act to target the enzymatic subunit of this complex to sites of action such as the centrosome. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth.
Ver Producto