ATP5PF antibody

Por favor contáctenos para obtener información detallada sobre el precio y disponibilidad.
Description
Mitochondrial membrane ATP synthase(F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1)-containing the extramembraneous catalytic core and F(0)-containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Also involved in the restoration of oligomycin-sensitive ATPase activity to depleted F1-F0 complexes.
Documents del producto
Product specifications
Category | Primary Antibodies |
Immunogen Target | ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 (ATP5PF) |
Host | Rabbit |
Reactivity | Human, Mouse, Rat |
Recommended Dilution | WB: 1:500-1:2000; IHC: 1:20-1:200 |
Clonality | polyclonal |
Conjugation | Unconjugated |
Isotype | IgG |
Observed MW | 9 kDa |
Purity | ≥95% as determined by SDS-PAGE |
Purification | Immunogen affinity purified |
Size 1 | 100µg |
Form | liquid |
Tested Applications | ELISA, WB, IHC |
Storage | PBS with 0.02% sodium azide and 50% glycerol pH 7.3, -20℃ for 12 months(Avoid repeated freeze / thaw cycles.) |
UniProt ID | P18859 |
Gene ID | 522 |
Alias | ATP synthase-coupling factor 6, mitochondrial (ATPase subunit F6),ATP synthase peripheral stalk subunit F6,ATP5PF,ATP5A,ATP5J,ATPM |
Background | Antibody anti-ATP5PF |
Status | RUO |
Note | Mol. Weight 9 kDa |
Descripción
Related Products

ATP5PF antibody
Mitochondrial membrane ATP synthase(F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1)-containing the extramembraneous catalytic core and F(0)-containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Also involved in the restoration of oligomycin-sensitive ATPase activity to depleted F1-F0 complexes.
Ver Producto
ATP Synthase-Coupling Factor 6, Mitochondrial (ATP5PF) Antibody
ATP5J Antibody is a Rabbit Polyclonal antibody against ATP5J. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the F6 subunit of the Fo complex, required for F1 and Fo interactions. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. A pseudogene exists on chromosome Yp11.
Ver Producto
ATP Synthase-Coupling Factor 6, Mitochondrial (ATP5PF) Antibody
Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the F6 subunit of the Fo complex, required for F1 and Fo interactions. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. A pseudogene exists on chromosome Yp11.
Ver Producto